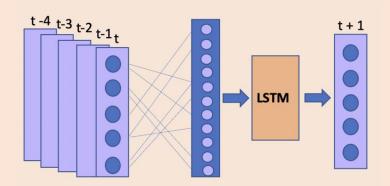
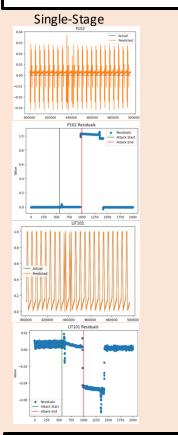
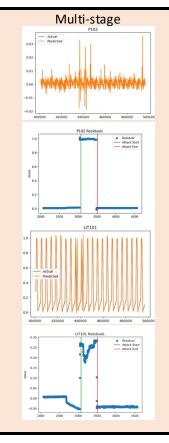

Accurate and Efficient Cyber Attack Detection in Water Filtration Systems using Machine Learning

Clemson University, Department of Industrial Engineering, Clemson, SC 29634 Chloe Crozier, Janhavi Deshpande, Sumanth Pandiri, Mathew Werner, and Dr. Dan Li


Introduction

- ☐ Industrial CPSs are prone to cyber attacks.
- ☐ Focus is on water filtration systems.
- □ Train LSTM models to detect attacks.




Methods: LSTM

- ☐ Two different models.
- ☐ First model uses 5 stages from a singular stage.
- ☐ Second model implements a total of 12 sensors from each of the 6 stages

Results

Future Steps

- Decrease the sensitivity of the current model when sensor is not under attack.
- ☐ Create a LSTM model where one stage predicts itself and the next stage.

References

Goh, J., Adepu, S., Tan, M., & Shan, L. Z.

(2017). Anomaly defection in cyber physical systems using recurrent neural networks. Retrieved March 27, 2023, from https://leeexplore.joe.org/jabstract/document/1911887

Al-Abassi, A., Kasimjour, H., Dehghanlanha, A., & Pasiz, R. M. (2020, May 4). An Ensemble Deep Learning-Based Cyber-Atlack Detection in Industrial Control Systems. Retrieved March 27, 2023, from https://iseexplore/sieeorg/document/19086038